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Generating structured networks based on a weight-dependent deactivation mechanism
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Motivated by the degree-dependent deactivation model generating networks with high clustering coefficient
[K. Klemm et al., Phys. Rev. E. 65, 036123 (2002)], a weight-dependent version is studied to model evolving
networks. The growth dynamics of the network is based on a naive weight-driven deactivation mechanism
which couples the establishment of new active vertices and the weights’ dynamical evolution. Both analytical
solutions and numerical simulations show that the generated networks possess a high clustering coefficient
larger than that for regular lattices of the same average connectivity. Weighted, structured scale-free networks
are obtained as the deactivated vertex is target selected at each time step, and weighted, structured exponential

networks are realized for the random-selected case.
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I. INTRODUCTION

Complex networks have attracted an increasing interest in
the past few years [1]. The main reason is that they play an
important role in the understanding of complex behaviors in
real world networks, including the structure of language [2],
scientific collaboration networks [3], the Internet [4], power
grids [5], food webs [6], biological networks [7], etc. The
highly heterogeneous topology of these networks is mainly
reflected in two characters, the small average path lengths
among any two vertices (small-world property) [8] and a
power-law distribution (scale-free property), P(k)~ k~” with
2=<y=3, for the probability that any vertex has k connec-
tions to other vertices [9]. Among these flourishing re-
searches, the aging and weight of vertices are of particular
interest [5,10-12], which can influence greatly the evolution
of the entire network. For instance, in citation networks, pa-
pers cease to receive links because their contents are out-
dated or summarized in review papers, which are then cited
instead; and also some famous papers are likely to be cited
longer more than those ordinary ones. The developed net-
work models considering the effect of vertices aging and
links weight to the growth of the network are the so-called
structured scale-free networks [12,13] and weighted evolving
networks [5,11,14,15]. The introduction of vertex aging
mechanism and link weight evolving mechanism provide us
with a profound view on understanding and characterizing
realistic complex systems.

Motivated by some previous researches [12,16,17], in the
present work, we proposed a simple model to generate struc-
tured networks by weight-driven deactivation mechanism
which couples the establishment of new active vertices and
the weights’ dynamical evolution. Both analytical solutions
and numerical simulations show that the generated networks
possess a high clustering coefficient larger than that for regu-
lar lattices of the same average connectivity. Weighted, struc-
tured scale-free (WSSF) networks are obtained as the deac-
tivated vertex is target selected at each time step, and
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weighted, structured exponential (WSE) networks are real-
ized for the random-selected case. For WSSF networks, it
was found that many interesting statistical properties (vertex
strengths and link weights) display good right-skewed distri-
bution observed in many realistic systems, while for WSE
networks, all the corresponding properties decay with an ap-
proximate exponential form.

II. RELATED WEIGHT-DRIVEN EVOLVING MODELS

Weighted networks can be described by a matrix wy;
specifying the weight on the edge connecting the vertices i
and j, with i,j=1,...,N, where N is the size of the network
(w;;=0 if the vertices i and j are not connected). The strength

of the vertex i can be defined as [11,18]

Si= 2 Wij» (1)

Jjev(i)

where the sum runs over the set V(i) of neighbors of i. Re-
cently, Barrat, Barthélemy, and Vespignani (BBV) [14,16]
have proposed a model for the evolving of weighted network
when new edges and vertices are continuously added into the
network while causing dynamic behavior of the weights.
Their model starts from an initial number of completely con-
nected vertices, m, with a same assigned weight w, to each
link. At each subsequent time step, the addition of a new
vertex n with m, edges and corresponding modification in
weights are implemented by the following two rules: (i) The
new vertex n is attached at random to a previously existing
vertex i according to a strength preferential attachment
mechanism s;/2s;, implying that new vertices connect more
likely to vertices handling larger weights. (ii) The additional
induced increase & in strength s; of the ith vertex is distrib-
uted among its nearest neighbors j € V(i) according to the
rule

W“

WU—>WU+ 5_11 (2)
S

More recently, Pandya [17] argued that this second rule,

though it could be just one possibility, does not follow the
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same mechanism as the first rule. For the case of the world-
wide airport network, the first rule can be described as “busy
airports get busier” according to the dynamics-driven factor
s;. The second rule, however, can be instead described by
“busy routes get busier” since the route i to j having more
traffic as indicated by w;; would handle larger portion of the
induced traffic J given by ow;;/s;. Pandya rewrites Eq. (2) as

W — W+ 5—‘; (3)

where V(i) indicates the set of all neighboring airports of i
and k# n. The last term of Eq. (3) indicates that it is more
probable that the induced traffic would go towards the airport
J handling maximum traffic s; among the neighboring air-
ports V(i), which is then cons1stent with the mechanism of
the first rule of BBV [17]. Moreover, one can easily see in
the BBV model that lim,_.., s;(tf) —°, which is not in accor-
dance with most realistic conditions. The deactivation
mechanism of vertices of the growing network introduced by
Klemm and Eguiluz [12] can well avoid the case of an infi-
nite increasing of the vertex strength.

III. WEIGHT-DEPENDENT DEACTIVATION MODEL

Inspired by the work in Ref. [12] and the statements in-
dicated in the preceding sections, we propose a deactivation
model to study the self-organization of weighted evolving
networks. The model describes the growth dynamics of a
network with directed links. Rather than the degree-
dependent deactivation dynamics of the vertices developed
in Ref. [12], our model is based on the weight-dependent
deactivation dynamics of the vertices, which can be con-
structed as the following steps.

First, start from an initial seed of m vertices completely
connected by undirected links with assigned weight w,. By
k! we denote the in-degree of vertex i—i.e., the number of
links pointing to vertex i—and by s/ the total induced
strength by in-degree links of vertex i. Each vertex of the
network can be in two different states: active or inactive. As
the initial condition we let all the m vertices active. At each
time step, a new vertex n is added with m links that are
attached to the previously existing my active vertices. Each
new added link is assigned weight w, and induces a total
strength increasing wy+ 6 to the linked active vertex. The
additional weight & will be distributed among the out-degree
links of the aim vertex according to the rule

/

Wi — Wi +6+ (4)

v 2 k e V(l)sk

For the sake of simplicity we set wy=1.0 and limit ourselves
to the case where the introduction of a new incoming link on
node i will trigger only local rearrangements of weights of its
nearest neighbors. The new added vertex is always in the
active state first. Remembering that at each time step only m,
vertices in the network are permitted to be active and all the
others are inactive, we will deactivate one of the mgy+1 ac-
tive vertices after the new active vertex is added to the net-
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FIG. 1. Tlustration of the proportionality between average s’
and k' for weighted scale-free networks with parameters N=10°,
WwWo= 10, my= 10, and a:mo(l + 5)

work. To perform this, we assume that the probability rate P
of deactivation decreases with the total induced strength of
the vertices. Then the deactivation probability of a vertex i
with induced strength s; can be written as

r-1 (5)

P(s]) o
a+s

1

where a>0 is a constant bias factor and the normalization
factor is defined as y—1={=;_[1/(a+s/)]}"". The summa-
tion runs over the set A of the currently my+1 active verti-
ces. Note that the larger induced strength a vertex possesses,
the more difficult for it to be deactivated, or in other words,
the easier for it to gain new links.

IV. STRUCTURAL PROPERTIES
A. Weighted scale-free networks

Following Ref. [12], the distribution N(k’) of the in-
degree k' can be obtained analytically for the model defined
above, considering the continuous limit of k’. Let us first
derive the distribution p)(k’) of the in-degree of the active
vertices at time ¢. For k' >0, the time evolution is deter-
mined by the master equation

PO+ 1) =[1 - PO, (6)

where P(k') is the deactivation probability of a vertex with
in-degree k’. The boundary value p(0) is a constant reflecting
the constant rate of new vertices with initial k’'=0. To do
further investigation, we first get the relation between s’ and
k' of the vertices from numerical simulations. In Fig. 1, we
plot s’ as a function of k’. In order to reduce statistical error,
the induced strengths of the vertices are calculated as an
average and the data are averaged over ten network realiza-
tions. The best linear fit gives s’ = (1+ §)k’; then, we obtain
P(k')=(1+06)P(s"), where P(s’) is the deactivation prob-
ability of a vertex with strength s’. Substituting them into
Eq. (6) yields
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PEDE + 1) = 1- pOK'). (7)

The subsequent thing is just to follow the analytical
method in Ref. [12]. Assuming that the fluctuations of the
normalization y—1 are small enough, such that y may be
treated as a constant, the stationary case p“"(k")=p? (k') of
Eq. (7) yields

! !/ ‘y— 1 !
p(k"+1)=p(k') =~ a—p(k ). (8)
— 4k’
1+06
Treating k as continuous we write
dp y—1
— =——p(k' 9
W e ) ©)
—+k
1+06
and obtain the solution
( a )—'y+l
K')=bl ——+k' , 10
Pl =b| T (10)

with appropriate normalization constant b. In case the total
number n of vertices in the network is large compared with
the number m, of active vertices, the overall in-degree dis-
tribution N(k') can be approximated by considering the in-
active vertices only. Thus N(k’) can be calculated as the rate
of change of the degree distribution p(k’) of the active ver-
tices. We find

d -Y

N(k’)=——p=c< ? +k’> : (11)
1+06

with ¢=(y-=1)[a/(1+6)]”"'. The exponent 7y is obtained

from a self-consistency condition obtained from the average

connectivity

o] k/ )
moch T4k, (12)
0 a ’
(755+)
146
which gives
a
=24+ ——0". 13
7T (14 0) (13)

Thus the exponent y depends only on the ratio a/mg(1+ 6). If
we choose the value of the constant bias a=m(1+ ), Eq.
(11) is none other than the probability distribution of vertices
total degree k=(my+k') of the network. Substituting a
=mg(1+6) and y=3 into Eq. (11), we get

N(k) = =52 (14)

In Fig. 2, we plot the total degree distribution of the net-
works with different values of 6=0.0,0.5,1.0,2.0, my
=10,7,5, and a=my(1+06). A power-law distribution P(k)
~ (k)~7 with best-fitted exponent y=2.96+0.05 is obtained,
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FIG. 2. Illustration of the probability distribution of vertex de-
grees for weighted scale-free networks with parameters N=10°,
wo=1.0, and a=mg(1+ ). The straight lines correspond to a power
law with exponent y=3.0.

which is well in agreement with our analytic result, Eq. (13).
In fact the distribution follows a power-law decay but with
an exponent 7y that depends on m, which has also been
found in the degree-dependent deactivation model [13]. In
order to show the asymptotic power-law behavior of the de-
gree distribution, in Fig. 3, we report the behavior of the
exponent 7y as a function of m. Even for values of my=< 10,
the degree exponents fast approach the limit of large values
of my,.

Notice that each new link added to the network will in-
duce a wy+ 6 strength increase in the aim vertex, which in-
dicates that the vertices with larger in-degree would likewise
have larger induced strength. According to the evolving
rules, the vertices with larger induced strength have more
probability to gain new links; then, the usual degree prefer-
ential attachment is reasonably recovered. This means that
the right-skewed character of the probability distribution of
the interesting statistical properties of the network, such as
the vertices total strength, also of the link weights, will re-
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FIG. 3. The value of the exponent vy as a function of m obtained
from numerical simulations for weighted scale-free networks with
parameters N=10%, wy=06=1.0, and a=mg(1+9).
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FIG. 4. Cumulative probability distribution of vertex strengths
(a) and cumulative link weights (b) for a weighted scale-free net-
work with parameters N=10°, my=10, wy=56=1.0, and a=m(1
+6). By comparison, the case of §=0.0 is also reported in (a),
which recovers the usual degree-dependent deactivation model and
the strength decays with a power-law form.

tain. In order to decrease the statistical fluctuation, we report
the cumulative probability distribution of the these two prop-
erties in Fig. 4. Although distinctly deviating from a simple
power-law behavior, the results are well expected, showing
good right-skewed character, which is reasonably in agree-
ment with the condition of many realistic systems [3,5,6,9].

B. Weighted exponential networks

We have investigated the case that the constant bias factor
a in Eq. (5) is selected as mgy(1+6), which gives rise to a
power-law decay of the degree distribution. Now we con-
sider the limit case that a — 0. For the sake of simplicity, we
choose a=Nmy(1+36). In the N—oo limit the deactivation
probability P(k’) is independent of k" and &, i.e., each of the
my+1 active vertices will be random deactivated with the
same probability 1/(my+1). Then Eq. (8) can be written as

1
m0+l

p(k"+1)=p(k') =~ p(k'). (15)

Again treating k' as continuous we write

dp 1
— = k' 16
dk’ m0+1p( ) (16)
and obtain the solution
(k') =b ( -k ) (17)
PRET=0ER\ 1)

with appropriate normalization constant b. Again, the overall
in-degree distribution N(k") can be obtained by

, dp -k’
N(k):—@:('exp(m +1>, (18)
0

with normalized fator ¢=1/(my+1). To obtain the total de-
gree distribution, we only need to rewrite Eq. (18) as
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FIG. 5. Ilustration of the probability distribution of vertex de-
grees for weighted exponential networks with parameters N=10°,
wo=1.0, and a=Nm(1+ ).

N(O = ¢ expl- 1) = — ( 0 ) ( : )
= exp(— = eX expl — B
¢ P Y my +1 P my +1 P my +1

(19)

where k=k’+mg. Thus, in the a—c0 limit, weighted net-
works with exponential decay of the degree distribution are
obtained and the exponent y depends strongly on my—i.e.,
v~ 1/(my+1). In Fig. 5, we plot the total degree distribution
of the networks with different values of 6=0.0,0.5,1.0, m,
=10,7,5, and a=Nmgy(1+36). As expected, N(k) decays ex-
ponentially. The behavior of the exponent vy as a function of
my+1 is given in Fig. 6, and in the inset the data are reported
as a log-log representation showing that y~ (my+1)7%. The
best linear fit gives S=1.0+0.05, which is well in agreement
with the analytical result. The numerical results of the cumu-
lative probability distribution of the vertex total strength and
the link weights for different values of & are summarized in
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FIG. 6. The value of the exponent y as a function of my+1
obtained from numerical simulations for weighted exponential net-
works with parameters N=10°, wy=56=1.0, and a=Nmy(1+6). In
the inset, the date reported on the log-log representation shows that
y~ (mo+1)7%, and the best linear fit gives 8=1.0+0.05.
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FIG. 7. Cumulative probability distribution of vertex strengths
(a) and cumulative link weights (b) for weighted exponential net-

works with parameters N=10°, my=10, wy=1.0, and a=Nmy(1
+90).

Fig. 7. Similar to the case of weighted scale-free networks,
both P.(s) and P.(w) deviate from a simple exponential de-
cay behavior for these weighted exponential networks.

C. Average clustering coefficient

To complete our study of the model, we finally study an-
other fundamental topological feature, the average clustering
coefficient measuring the average probability with which two
neighbors of a vertex are also neighbors to each other. It has
been found that many real-world networks display a high
clustering coefficient [1]. For the degree-dependent deactiva-
tion model, Klemm and Eguiluz have studied the case that
the average clustering coefficient depends strongly only on
the overall degree distribution N(k) (see details in Ref. [19]),
which can be expressed as

(" (k—mgy+ 1)(k—myg)
c_fmo(l— o )N(k)dk. (20)

The expression is also suitable for the weight-dependent
deactivation model we studied here. Thus, in the case of
weighted scale-free networks where N(k):2m(2)k‘3 when the
constant bias factor a=mg(1+ 5), we get

5
C=—--
6 30m,
identical to the result in Ref. [19]. In the limit of large m, the
average clustering coefficient is 5/6. In the case of weighted
exponential networks when the constant bias factor a — o,

inserting Eq. (19) into Eq. (20) and performing the integral
over k, we obtain

2
Mo —m —-m
c=—" Oexp< o )f( 0)
my+ 1 my+ 1 my+ 1

2
my—3my+2 my—1 —-mg+ 1
, o= 3mo exp( 0 )f( 0 )
m0+l m0+l m0+l

where f(x) is a special exponential integral function and has

+O(my?), (21)
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FIG. 8. Illustration of the average clustering coefficient C as a
function of mg. The squares and circles correspond to weighted,

structured scale-free networks and weighted, structured exponential
networks, respectively.

the form f(z)=—/" [exp(—x)/x]dx. In the limit of large m,
the average clustering coefficient gets close to an asymptotic
value of 0.789. These results have also been confirmed by
extensive numerical simulations (see Fig. 8). The depen-
dence of the average clustering coefficient C on the size N of
the weighted networks is reported in Fig. 9, which also
shows a similar asymptotic behavior.

It is worth noting that the average clustering coefficient of
both weighted scale-free networks and weighted exponential
networks is higher than that for the corresponding one-
dimensional regular lattices whose value is 3/4 in the limit
case. Thus the weight-dependent deactivation model gener-
ates networks with high clustering—i.e., from weighted,
structured scale-free networks to weighted, structured expo-

nential networks depending on the value of the constant bias
factor a from mgy(1+ 6) to .
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FIG. 9. Illustration of the average clustering coefficient C as a

function of N. The squares and circles correspond to weighted,

structured scale-free networks and weighted, structured exponential
networks, respectively.
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V. CONCLUSIONS

In summary, we have studied a simple evolving model for
weighted, structured networks. The growth dynamics of the
network is governed by a naive weight-driven deactivation
mechanism. The deactivation probability is proportional to
the inverse of the vertex strength induced by its in-degree
links, which characterize the vertices’ capability of obtaining
further links. By tuning the value of the constant bias factor
in the deactivation probability, we have found many interest-
ing evolutionary results of the model. If the value of a is
selected appropriately as mg(1+ 8)—i.e., the active vertices
are target selected to deactivate with Eq. (5)—the model
leads to a power-law probability distribution for the total
degree characterized by an exponent y=3.0. Besides the ver-
tex degree, some statistical properties of the generated net-
work, such as vertex strength and link weight, display a good

PHYSICAL REVIEW E 71, 066124 (2005)

right-skewed distribution character, which has been found to
be very common in most realistic systems. However, as the
value of a tends to co—namely, the active vertices are ran-
dom selected to deactivate with the same probability 1/(m,
+1)—the model gives rise to an exponential probability dis-
tribution for the total degree characterized by an exponent y
which depends strongly on my. Particularly, in the limit of
large m, the weight-dependent deactivation model generates
structured networks with high clustering-coefficient values
larger than those for the corresponding one-dimensional
regular lattices in the limit case.
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